Могучий военно-промышленный комплекс СССР разрабатывал водородные технологии с середины 60-х. Результатом работ стал первый в мире криогенный самолет на водородном топливе Ту-155. Впервые он поднялся в воздух более 20 лет назад, 15 апреля 1988 года.

Радужность скорого водородного будущего, однако, портят некоторые мелочи. Основная незадача в том, что водорода на Земле в свободном виде нет, месторождения имеются разве что на Юпитере и Сатурне. Значит, его придется производить. То есть, водород для жителей Земли вовсе не источник энергии, а лишь ее носитель, вроде аккумулятора. Чтобы получать из батареи ток, ее надо сначала зарядить. Точно так же, прежде, чем сжечь водород в двигателе, его надо сначала извлечь из другого вещества, причем на это придется потратить энергию. Причем затратить только на производство водорода энергии придется больше, чем ее выделится потом при сгорании в двигателе. Сжижение водорода съест еще около 75 процентов энергии, выделяемой при его сгорании. Для получения водорода и его сжижения нужна электроэнергия, а ее производят в основном на тепловых электростанциях, сжигающих либо газ, либо уголь, либо мазут. КПД современной ТЭЦ около 30%. Выходит, что для получения единицы энергии от сгорания водорода надо затратить от 4-10 единиц, сжигая другие виды топлива.
А вот что пишет о водородной проблеме американский журнал «Скептик» (Skeptic, http://www.skeptic.c...c/08-03-12.html), который специализируется на разоблачении научных мифов:
Более 90% водорода получают, расщепляя природный газ с хорошей эффективностью – около 72%. При этом на процесс выделения водорода теряется лишь 28% энергии, содержащейся в газе. Однако в ходе расщепления в атмосферу попадают очень вредные окислы азота, которые, к тому же разогревают ее в 58 раз сильнее, чем углекислый газ. Примерно с такой же эффективностью и такими же последствиями водород получают из нефти (6% водорода). Но ведь метан и нефть сами по себе удобные энергоносители, и на них ДВС прекрасно работает.
Около 4% водорода получают, расщепляя воду, чтобы получить особо чистый газ. КПД электролиза – около 70%. Электричество, необходимое, для расщепления, можно получить с электростанции, сжигая углеводороды. КДП электростанции около 30%. Так что общий КПД получается 70 * 30% = 21%. То есть конечному потребителю достанется только пятая часть от энергии сожженной нефти или газа. Может быть, все же проще использовать в качестве топлива саму нефть?
С электричеством, полученном на гидро-, атомных и других станциях картина столь же удручающа. Например, общий КПД получения водорода с помощью ветрогенератора – около 25%, а от солнечных батарей – 10%.
Использование особых бактерий или микроводорослей, выделяющих водород, еще менее эффективно их КПД 0,1%.
Однако получить водород – еще полдела, его надо в чем-то хранить. Чтобы сжать водород до 700 атм, надо истратить 15% заключенной в нем энергии, а чтобы превратить в жидкость – до 40%. Стандартный 40-литровый баллон для водорода весит пустой почти 70 кг, а наполненный под завязку – 70 кг и 53 грамма.
Бензобак Хонды Аккорд, к примеру, весит 11 кг, вмещает 65 л бензина и стоит 100 долларов. С полной заправкой можно проехать без малого 800 км. Баллон с водородом под давлением 200 Атм будет весить 400 кг, стоить 2000 долларов и займет собой практически весь объем багажника. Проехать на нем можно всего 265 км.
Головной болью окажется доставка водорода на АЗС. Бензин развозят в цистернах, газ транспортируют по трубопроводам. Автоцистерны с бензином хватает на заправку около 800 автомобилей, Цистерна с водородом сможет заправить только 60. Значит для заправки того же количества машин количество цистерн надо увеличить более чем в 10 раз!
В США имеется около 200 000 миль трубопроводов природного газа. Но для водорода эти трубы не годятся – нужны другое сечение и другой материал (обычная сталь по действием водорода становится хрупкой). Новые трубопроводы обойдутся в 200 миллиардов долларов.
Таким образом, на выработку, хранение и транспортировку литра водорода всегда придется тратить значительно больше энергии, чем в нем имеется. Поэтому смысл использовать водород в качестве топлива весьма сомнителен.
С сказанному добавим, что кроме бака придется устанавливать весьма дорогие системы подачи газа высокого давления, а также системы контроля утечки газа. Вспомним хотя бы какие системы пришлось разрабатывать в ОКБ Туполева для переделки обычного Ту-154 в водородный самолет:
- топливный бак с высокоэффективной теплоизоляцией для размещения жидкого водорода с температурой -253С;
- топливный комплекс включал в себя заново разработанные: систему подачи топлива в двигатель, систему поддержания давления в баке с аварийным предохранительным устройством, систему циркуляции, наддува бака, систему аварийного слива криогенного топлива; система подачи топлива состояла из центробежных и струйных насосов, теплоизолированных трубопроводов, криогенных агрегатов и клапанов;
- На самолете установили азотную систему, замещающую азотную атмосферу в отсеках самолета и предупреждающую экипаж при утечки водорода задолго до взрывоопасной концентрации.
Конечно, все эти страшно дорогие системы внедрять в автомобиль нет нужны, но без некоторых, к примеру, контроля утечки, не обойтись – гремучая смесь водорода с воздухом взрывается не хуже динамита. А кто захочет ездить на динамите?